Performance measurement for brain-computer or brain-machine interfaces: a tutorial.

نویسندگان

  • David E Thompson
  • Lucia R Quitadamo
  • Luca Mainardi
  • Khalil Ur Rehman Laghari
  • Shangkai Gao
  • Pieter-Jan Kindermans
  • John D Simeral
  • Reza Fazel-Rezai
  • Matteo Matteucci
  • Tiago H Falk
  • Luigi Bianchi
  • Cynthia A Chestek
  • Jane E Huggins
چکیده

OBJECTIVE Brain-computer interfaces (BCIs) have the potential to be valuable clinical tools. However, the varied nature of BCIs, combined with the large number of laboratories participating in BCI research, makes uniform performance reporting difficult. To address this situation, we present a tutorial on performance measurement in BCI research. APPROACH A workshop on this topic was held at the 2013 International BCI Meeting at Asilomar Conference Center in Pacific Grove, California. This paper contains the consensus opinion of the workshop members, refined through discussion in the following months and the input of authors who were unable to attend the workshop. MAIN RESULTS Checklists for methods reporting were developed for both discrete and continuous BCIs. Relevant metrics are reviewed for different types of BCI research, with notes on their use to encourage uniform application between laboratories. SIGNIFICANCE Graduate students and other researchers new to BCI research may find this tutorial a helpful introduction to performance measurement in the field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface

User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...

متن کامل

Comparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System

 Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

Brain-Computer Interfaces: from theory to practice

Brain-Computer Interfaces (BCI) are a new kind of humanmachine interfaces emerging on the horizon. They form a communication pathway between the brain and a machine. This can be achieved by measuring brain signals and translate them directly into control commands. Such a system allows people with severe motor disabilities to manipulate their environment in an alternative way. However there’s st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neural engineering

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2014